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Abstract 

 Type 2 diabetes mellitus (T2D) is one of the most prevalent diseases in the world and 

presents a major health and economic burden, a notable proportion of which could be 

alleviated with improved early prediction and intervention. While standard risk factors 

including age, obesity, and hypertension have shown good predictive performance, we show 

that the use of CpG DNA methylation information leads to a significant improvement in the 

prediction of 10-year T2D incidence risk. 

Whilst previous studies have been largely constrained by linear assumptions and the use of 

CpGs one-at-the-time, we have adopted a more flexible approach based on a range of linear 

and tree-ensemble models for classification and time-to-event prediction. Using the 

Generation Scotland cohort (n=9,537) our best performing model (Area Under the Curve 

(AUC)=0.880, Precision Recall AUC (PRAUC)=0.539, McFadden’s R2=0.316) used a 

LASSO Cox proportional-hazards predictor and showed notable improvement in onset 

prediction, above and beyond standard risk factors (AUC=0.860, PRAUC=0.444 R2=0.261). 

Replication of the main finding was observed in an external test dataset (the German-based 

KORA study, p=3.7x10-4). Tree-ensemble methods provided comparable performance and 

future improvements to these models are discussed. 

Finally, we introduce MethylPipeR, an R package with accompanying user interface, for 

systematic and reproducible development of complex trait and incident disease predictors. 

While MethylPipeR was applied to incident T2D prediction with DNA methylation in our 

experiments, the package is designed for generalised development of predictive models and is 

applicable to a wide range of omics data and target traits.
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Introduction 

Diabetes mellitus is one of the most prevalent diseases in the world and a leading cause of 

mortality. Around half a billion people live with diabetes worldwide, with type 2 diabetes 

(T2D) making up about 90% of these cases [1]. Individuals with diabetes can suffer from 

debilitating complications including nerve damage, kidney disease and blindness [2]. The 

disease also increases the future risk of dementia and cardiovascular disease [3], with recent 

studies highlighting obesity and T2D as risk factors for COVID-19 disease severity and ICU 

admission [4]. Furthermore, risk of complications increases over time and is exacerbated if 

blood-glucose levels are poorly managed. Despite developments in the way T2D can be 

managed for patients, these treatments are reactive, focusing on patients that have already 

been diagnosed. Early prevention and detection could therefore have major health and 

economic impacts.  

While the mechanisms of insulin resistance in T2D are well-known, the interaction between 

genetic and environmental factors that increase T2D susceptibility are less understood. 

Epigenetics is the study of heritable changes to DNA that do not modify its nucleotide 

sequence. A commonly studied form of this is DNA methylation (DNAm), whereby methyl 

groups are attached to the DNA molecule - most commonly to the 5-carbon on a cytosine in a 

cytosine-guanine pair (CpG). Due to its involvement with gene expression and gene-

environment interactions, DNAm can provide dynamic predictive information for disease risk 

for an individual. For example, penalised regression models have been used to show that 

weighted linear CpG predictors can explain a substantial proportion of phenotypic variance of 

modifiable health factors including body mass index (BMI) (12.5%), HDL cholesterol 

(15.6%) and smoking status (60.9%) [5]. 
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Epigenome-wide association studies (EWAS) have identified a number of CpG sites 

significantly associated with T2D [6-10] as well as related risk factors such as cardiovascular 

disease [11] and obesity [12, 13]. While these provide some predictive performance for T2D 

prevalence, incident T2D has been less well studied. Given that preventative lifestyle changes 

have been shown to effectively reduce T2D onset [14], prediction of T2D incidence years 

ahead of time would be greatly beneficial in stratifying populations so those at high risk can 

be monitored and treated with early interventions.  

Currently, most studies generating DNAm predictors consider marginal CpG effects or 

assume only linear additive effects between CpGs. The use of predictive models that can 

incorporate both interaction and non-linear effects could capture more complex relationships 

between variables, resulting in greater prediction accuracy.   

Here, we use one of the world's largest studies with paired genome-wide DNAm and data 

linkage to electronic health records (EHR), Generation Scotland (n=9,537, n=428 incident 

T2D cases over 14 years of follow-up), to train and test epigenetic scores (EpiScores) for 

T2D. Availability of time-to-event information (time from baseline, here defined as DNAm 

sampling date, to disease onset or censoring) enables the use of survival models. We consider 

penalised linear models and tree-ensemble models in both classification and survival/time-to-

event model forms and describe the added contribution of these DNAm predictors over and 

above standard risk factors e.g. age, sex and BMI. We then validate the best performing 

model in the KORA S4 cohort [15], providing further evidence of the applicability of our 

EpiScore to external populations.  

As T2D and related risk factors such as obesity have also been associated with severity of 

COVID-19 infection, we also evaluate the performance of T2D EpiScores on predicting long 

COVID-19 and hospitalisation in infected individuals in the Generation Scotland study. 
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The analysis pipeline is implemented via a new R package, MethylPipeR, along with 

accompanying user interface, for systematic and reproducible development of complex trait 

and incident disease predictors. MethylPipeR provides functionality for tasks such as model 

fitting, prediction and performance evaluation as well as automatic logging of experiments 

and trained models. This is complemented by MethylPipeR-UI which provides an interface to 

the R package functionality while removing the need to write scripts. While MethylPipeR was 

applied to incident T2D prediction with DNA methylation in our experiments, the package is 

designed for generalised development of predictive models and is applicable to a wide range 

of omics data and target traits. MethylPipeR and MethlyPipeR-UI are publicly available at 

https://github.com/marioni-group/MethylPipeR and https://github.com/marioni-

group/MethylPipeR-UI respectively. Supplementary Figure 1 shows an example from the 

MethylPipeR-UI interface including functionality such as data upload, specification of model 

options and visualisation of model diagnostics. 

 

Methods 

Generation Scotland 

DNAm and linked health data were obtained from Generation Scotland [16], a family-

structured population-based cohort. The cohort consists of 23,960 participants aged 18-99 

years at recruitment (between 2006 and 2011), of whom 9,537 currently have genome-wide 

DNAm data available (Illumina EPIC array) following quality control. DNAm quality control 

consisted of removing probes with outliers, low bead count in ≥5% of samples or a high 

detection p-value (>0.05) in more than 5% of samples. Samples with mismatch between 

predicted and recorded sex or ≥ 1% of CpGs with detection p-value > 0.05 were also 

removed. To enable the predictors to be applied to existing cohort studies with older Illumina 
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array data, CpGs were filtered to the intersection of the 450k and EPIC array sites 

(n=398,422 CpGs).  

DNAm data were processed as two separate sets, with 5,087 (Set 1) and 4,450 (Set 2) 

individuals. Processing took place in 2017 and 2019, respectively. Set 1 included related 

individuals while all individuals in Set 2 were unrelated to each other and to individuals in 

Set 1 (genetic relationship matrix (GRM) threshold <0.05). In our experiments, Set 2 was 

used as the training set and Set 1 as the test set to avoid the presence of related individuals in 

the training set.  

Participant health measures such as age, body mass index (BMI) and sex were taken at 

baseline as well as self-reported hypertension and family (parent or sibling) history of T2D. 

BMI was calculated as the individual's weight in kg divided by the square of their height in 

metres. Missing values in the health measures were treated as missing-completely-at-random 

and the corresponding individuals were excluded (nSet 1=119, nSet 2=25). 

 Disease cases were ascertained through data linkage to NHS Scotland health records 

consisting of hospital (ICD codes) and GP records (Read2 codes). Prevalent cases were 

identified from a baseline questionnaire (self-reported) or from ICD/Read2 codes dated prior 

to baseline and removed from the dataset. Type 1 and juvenile cases were treated as control 

observations. All included and excluded terms are listed in Supplementary Table 1. A total 

of 428 incident cases were observed over the follow up period (from recruitment date to 

09/2020): 80% of cases had a C10F. “type 2 diabetes mellitus” code; 14% had a C10.. 

“diabetes mellitus” code; 5% had a C109. “Non-insulin dependent diabetes mellitus” code. 

The remaining codes diabetes mellitus with: neurological manifestation (n=1); renal 

manifestation (n=4); and with adult onset and no mention of complication (n=3).  
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Outcome Definition for 10-Year Onset Prediction 

Linkage to NHS Scotland health records provided dates for disease diagnoses from which 

age-at-onset was calculated. Along with age at baseline (DNAm sampling), these were used 

to calculate the time-to-event, measured in years, for each individual. For incident T2D cases 

and controls, time-to-event was defined as the time from baseline to disease onset and 

censoring (end of follow up period or died without a disease diagnosis), respectively. 

Our primary prediction outcome was incident T2D diagnosis within 10 years. For this 

purpose, two types of model were used. For binary classification models, further 

preprocessing of cases and controls was performed to reflect 10-year onset prediction. 

Incident cases with time-to-event >10 years were treated as controls (training n=10, test 

n=35). Controls with time-to-censoring ≤10 years were excluded (training set n=2,668, test 

n=2,642), given it was unknown if those individuals would develop T2D within the 10-year 

period. 

For survival models, this further preprocessing was only applied to the test set due to the 

ability to incorporate censoring information in the training set. For these models, controls that 

had died within the 10 year period were excluded from the training set (n=129) as it was 

unknown if the death was due to a diabetes-related (and therefore confounding) risk factor. 

There were 153 cases and 1,242 controls in the training set and 213 cases and 1,793 controls 

in the test set. The numbers of individuals/cases and controls after each preprocessing step 

are also shown in Supplementary Figure 2. 

 

Incremental R2 Modelling 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 21, 2021. ; https://doi.org/10.1101/2021.11.19.21266469doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.19.21266469
http://creativecommons.org/licenses/by/4.0/


In the test set, a null model was defined via logistic regression of 10-year risk of diabetes 

with age, sex, BMI, self-reported hypertension, and self-reported family (sibling or parental) 

history of diabetes as predictors. The area under the curve (AUC), area under the precision-

recall curve (PRAUC) and the adjusted McFadden's pseudo-R2 (henceforth referred to as R2) 

for the model were considered as classification/fit metrics. DNAm predictors were then 

generated in the training dataset using a variety of machine learning methods, via the 

MethylPipeR package (Figure 1), before being applied to the test set in an incremental R2 

modelling approach (further detail in Supplementary Methods).  

 

Penalised regression predictors 

Since the number of CpGs (n=398,422) was much greater than the number of rows in the 

training set (n=1,395 after preprocessing), a regularisation method was required to reduce 

overfitting of the logistic and Cox proportional hazards regression models.  

Lasso, elastic-net and ridge penalisation were fit to the training set DNAm data using glmnet 

[17, 18] with the best shrinkage parameter (λ) chosen by cross-validation. For elastic-net 

models, α = 0.5 was used for the L1, L2 mixing parameter (full details in Supplementary 

methods). Models with and without weights to correct for an imbalance in the numbers of 

cases compared to controls were also considered.  

 

Tree Ensemble Models 

Due to computational limitations and probable overfitting in using the tree ensemble models 

on all CpGs in the dataset, variable pre-selection was based on the coefficients in the 

penalised logistic models. Each tree-ensemble model was evaluated with the features 
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corresponding to non-zero coefficients from the logistic lasso model and also with those 

selected by elastic-net. 

Two tree ensemble approaches were used: random forest and Bayesian Additive Regression 

Trees (BART). Random forest [19] is an ensemble machine learning model that estimates a 

function by averaging the output from a set of independently trained decision trees. During 

model fitting, each tree is built using a different subset of the variables from the training set 

to prevent individual trees from overfitting to the whole dataset. BART is a nonparametric 

method that estimates a function as a sum over a set of regression trees. BART incorporates 

the ability to model both additive and interaction effects and has shown high predictive 

performance in comparison with similar methods [20]. In addition to binary classification, 

survival random forest [21] and survival BART [22] models were considered.  

 

Evaluating Predictive Performance 

AUC and PRAUC were calculated as measures of predictive performance as the 

discrimination threshold was varied. PRAUC is more informative in situations where there is 

a class imbalance in the test set. R2 was evaluated for each model with the incremental R2 

calculated as the difference in R2 between the null model and the full model. Additionally, 

binary classification metrics consisting of sensitivity (recall), specificity, positive predictive 

value (PPV/precision) and negative predictive value (NPV) were calculated. These metrics 

require selection of a probability threshold to assign positive/negative class predictions and 

have varying behaviour as this threshold is altered. Therefore, each of the metrics were 

calculated at a range of thresholds between 0-1 in increments of 0.01. 
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Model calibration was examined by comparing predicted probabilities with actual 

case/control proportions. The test data was sorted by predicted probability and divided into 

bins; the mean predicted probability and the proportion of cases was calculated for each bin. 

 

Selected-CpG Comparison with EWAS Catalog 

Lasso and elastic-net model penalties result in most coefficients being set to 0, effectively 

selecting a small subset of CpGs and covariates to be used in prediction. The selected CpGs 

for the highest R2 penalised model were queried in the EWAS Catalog [23] to identify traits 

that have previously been linked to these sites at an epigenome-wide significance threshold of 

P < 3.6 x 10-8 in studies with a sample size > 1,000 [24]. 

 

Validation in KORA S4 

The highest R2 model (weighted Cox lasso) was applied to the KORA S4 cohort [15]. This 

cohort consisted of 1,451 individuals in southern Germany, aged 25-74. Full summary 

statistics are shown in Supplementary Table 2. Similar to the approach in the Generation 

Scotland test set, an EpiScore was computed for each individual in the KORA dataset. 

Evaluation was then performed in incremental R2 approach. Additional cohort and methods 

details are provided in Supplementary methods. 

 

EpiScore Prediction of Long COVID-19/Hospitalisation 

The subset of the Generation Scotland cohort with reported COVID-19 infection (positive 

test or suspected) in the CovidLife study [25] were used for prediction of long COVID-19 and 

hospitalisation from COVID-19. Long COVID-19 cases were defined here as individuals 
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with self-reported symptoms lasting ≥ 4 weeks. Hospitalisation cases were defined as hospital 

admissions with accompanying ICD10 codes U07.1 (confirmed COVID-19 test) and U07.2 

(clinically diagnosed), derived from the Scottish Morbidity Records (SMR01). Details of the 

method and summary statistics are shown in Supplementary methods and Supplementary 

Table 3. 

 

Results 

After preprocessing, the mean time-to-onset of T2D was 5.24 and 5.12 years for the training 

(n=153 cases) and test (n=213 cases) sets, respectively. Mean age-at-onset was also similar 

between the training and test set at 62.1 and 59.8 years and the mean BMI for cases (at 

baseline) was 31.8 and 32.7. The full set of summary statistics for cases and controls in both 

sets are shown in Table 1 and Supplementary Table 4. The machine learning prediction 

pipeline of the MethylPipeR package is shown in Figure 1. 

 

Null Model for the Incremental Modelling Approach 

A logistic regression model in the test set with age, sex, BMI, self-reported hypertension, and 

family history of diabetes as predictors yielded good classification metrics: AUC=0.860, 

PRAUC=0.444, R2=0.261. 

 

Penalised Logistic Regression and Cox PH 

Lasso and elastic-net models showed similar values across all metrics with test set AUC, 

PRAUC and R2 ranges of 0.875-0.878, 0.490-0.500 and 0.294-0.301, respectively 

(Supplementary Table 5). Logistic ridge offered minimal improvement over the null model 
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and the weighted logistic ridge was not included in the results due to computational issues in 

model fitting.  

Compared to the logistic models, the Cox models showed a greater difference in performance 

metrics with test set AUC, PRAUC and R2 ranges of 0.870-0.881, 0.483-0.539 and 0.285-

0.316, respectively (Supplementary Table 5). This difference was most apparent when 

comparing the weighted vs. non-weighted cox models; for example, adding class weights for 

Cox elastic-net led to an increase of 1.1%, 5.2% and 3.1% in absolute terms for AUC, 

PRAUC and R2.  

The best-performing Cox and logistic models are presented in Table 2 and Figure 2; the 

CpG weights for these models are shown in Supplementary Tables 6 and 7. Comparing all 

models together (Supplementary Table 5), the weighted Cox models outperform all others. 

Cox lasso (with weights) showed the highest PRAUC and R2 - 0.539 and 0.316, respectively - 

and an AUC of 0.880, 0.1% short of the highest AUC of 0.881 (corresponding to Cox elastic-

net with weights). The effect of class weights was further emphasised here as the higher 

performance of the Cox predictors above the logistic predictors was only present when 

weights were applied. All models other than the logistic ridge showed a p-value < 0.05 for 

the EpiScore coefficient in the incremental R2 full model, with a range of 1.71x10-16 to 

3.15x10-4. 

 

Tree-Ensemble Models 

Overall, the tree-ensemble models resulted in lower but comparable results to logistic and 

Cox models. AUC, PRAUC and R2 values showed ranges of 0.865-0.876, 0.458-493 and 

0.269 and 0.293, respectively (Supplementary Table 5). With the exception of the survival 

random forest with weighted lasso features (see Supplementary Methods for details), the 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 21, 2021. ; https://doi.org/10.1101/2021.11.19.21266469doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.19.21266469
http://creativecommons.org/licenses/by/4.0/


BART models outperformed the random forest methods in both survival and classification 

formulations. In addition, with the exception of BART with elastic-net features, models that 

used weighted logistic model-selected features achieved higher performance than those using 

unweighted logistic features. 

Differences in performance between survival and classification formulations of the same 

model type were relatively small. For instance, the best performing tree-ensemble model, 

classification BART (with weighted lasso features) showed AUC, PRAUC and R2 values of 

0.876, 0.493 and 0.293 respectively. Similarly, survival BART (with weighted lasso features) 

gave values of 0.874, 0.488 and 0.288, corresponding to differences of 0.002, 0.005 and 

0.005 across the respective metrics. The best-performing BART and random forest models 

are shown in Table 2 with the BART model also highlighted in Figure 2. 

 

Binary Classification Metrics and Model Calibration 

Figure 3 shows how sensitivity, specificity, PPV and NPV vary for the best performing 

logistic model (weighted logistic elastic-net) and tree-ensemble model (BART with weighted 

lasso features). These are shown for the EpiScore applied to the test set without additional 

covariates. In general, as the classification probability threshold is increased, sensitivity and 

NPV decrease while specificity increases. However, there are clear differences between the 

two; for example: the logistic model shows greater PPV values in the high probability 

threshold range, while the same metric drops off in BART. In addition, while the overall 

trends in sensitivity, specificity and NPV are similar, the rate of change across the probability 

thresholds differ. BART shows greater changes in these metrics in the low probability 

threshold range. The differences in the two models is also apparent from the calibration 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 21, 2021. ; https://doi.org/10.1101/2021.11.19.21266469doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.19.21266469
http://creativecommons.org/licenses/by/4.0/


curves (Supplementary Figure 3). Additionally, the effects of these differences on the 

number of true positives and true negatives are illustrated in Figure 4. 

 

Selected CpGs 

The weighted Cox lasso model assigned non-zero coefficients to 69 CpGs (Supplementary 

Table 6). After filtering the EWAS Catalog by p-value (P<3.6x10-8) and sample size 

(N>1,000), 20 of the model-selected CpGs were present in the catalog. These CpGs 

corresponded to 176 entries and showed epigenome-wide associations with traits including: 

serum HDL cholesterol, serum triglycerides, smoking, C-reactive protein, BMI and age 

(Supplementary Table 8).  

 

Validation in KORA S4 

Prediction of incident diabetes in the KORA S4 cohort using the weighted Cox lasso model 

showed good replication of EpiScore performance (P=3.7x10-4) with increases of 0.93%, 

1.9% and 1.2% in absolute terms above the null model values for AUC, PRAUC and R2 

respectively. Further details are provided in Supplementary Table 9. 

 

EpiScore Prediction of Long COVID-19/Hospitalisation 

Age at COVID-19 diagnosis and sex were not predictive of long COVID-19 in a logistic 

regression model (Supplementary Table 10). In addition, the weighted Cox Lasso T2D 

EpiScore (from baseline blood-based DNA collected between 2006 and 2011) did not show a 

significant improvement in prediction when added as a variable. Similarly, the EpiScore was 

not predictive of hospitalisation after COVID-19 infection. 
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Discussion 

Utilising a large cohort with genome-wide epigenetic data and health records linkage to 

longitudinal primary and secondary care health diagnoses, we have shown that DNAm-based 

predictors augment standard risk factors in the prediction of incident type 2 diabetes. The best 

model with traditional risk factors yielded an AUC of 0.860 compared to 0.881 when DNAm 

was also considered. PRAUC increased from 0.444 to 0.539 and R2 from 0.261 to 0.316. 

Using a variety of linear and non-linear models, we showed that overall, weighted penalised 

Cox PH models produced the most predictive EpiScore. This EpiScore also showed good 

external validation performance in the KORA S4 cohort. Beyond the T2D analysis presented 

here, we have developed the MethylPipeR R package to facilitate reproducible machine 

learning time-to-event and binary prediction using DNAm or other types of high-dimensional 

omics data. 

Determining a 'best' model is complicated and depends on the trade-off that a user wishes to 

make. Here, we optimised AUC, PRAUC and R2 but binary classification metrics vary by 

method and classification threshold. When using classifiers in clinical settings, decisions 

need to be made about the number of patients that can be recommended for intervention as 

well as the acceptable proportion of false positives and false negatives. In addition, an 

assessment of calibration is also critical [26]. Investigation of how these related criteria could 

assist in deciding an optimal threshold given clinical constraints and provide a more 

comprehensive assessment of model predictions than AUCs or metrics at the commonly-

utilised threshold of 0.5.  

Analysis of the EpiScores with COVID-19 phenotypes showed that while the scores 

considerably increased incident T2D prediction performance, they are not indicative of 
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susceptibility to severe COVID-19 symptoms, despite previously found associations between 

the two [4]. 

Several CpGs from the EpiScores were previously identified as epigenome-wide significant 

correlates of traits commonly linked to T2D [10, 13, 27-31]. Future work could investigate 

overlap between these and time-to-event EWAS studies. Further studies could also include 

DNAm predictors for traditional risk factors, such as BMI [5], and protein EpiScores known 

to be linked to T2D and related pathways [32].  

Limitations include the relatively small number of disease cases in the dataset, the limited 

hyperparameter optimisation performed for BART and the relatively simple variable pre-

selection method for tree-ensemble methods. Given the lower but competitive performance of 

these methods compared to the best models in this study, there is potential for additional 

improvement in predictive performance with further investigation of more advanced pre-

selection. This is particularly important when we consider that the pre-selection step utilised 

linear models prior to the non-linear model fitting. The model fitting and pre-selection were 

also performed using the same training set which may have introduced selection bias [33]. In 

addition, factors such as overfitting, related individuals in the test set and batch effects 

between the two rounds of DNAm data processing may all have an effect on test-set AUC. 

Finally, a small proportion of the linkage codes used to define diabetes included broad terms 

that were non-specific to T2D; however, late age of onset in these individuals meant there 

was a high likelihood that they had developed T2D. EpiScores for T2D-associated proteins 

have also been shown to replicate incident T2D-protein associations within this sample [32] 

suggesting that the case definitions we use capture biological signals relevant to T2D.  

There are numerous strengths to our study. Firstly, the models used capture relationships 

between CpGs as well as time-to-event information, which is not possible using traditional 
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EWAS methods. Secondly, data linkage to health care measures provided comprehensive 

T2D incidence data in a very large cohort study, Generation Scotland. Validation 

performance in the KORA cohort also strengthened evidence for the applicability of the 

models to other populations. Finally, the R package, MethylPipeR, encourages reproducibility 

and allows others to develop similar predictors on new data with minimal setup. 

In conclusion, we have demonstrated the potential for DNA methylation data to provide 

notable improvement in predictive performance for incident T2D, as compared to traditional 

risk factors (age, sex, BMI, hypertension, and family history). We evaluated a wide range of 

models with a systematic approach and presented a framework with the ability to generalise 

to other traits and datasets for training and testing predictors in future studies. 
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Supplementary Methods 

Methylation Risk Scores and Incremental R2 

Each model was fit to the training set using the CpGs as features. This trained model was 

used to create an Epigenetic Score (EpiScore) for each individual in the test set and its 

predictive performance was evaluated by fitting a logistic model (full model) on the test set 

including the EpiScore and covariates (age, sex, BMI, hypertension and parent/sibling T2D). 

This was compared to the null model (logistic with covariates only) to assess the difference in 

metrics such as the area under the curve (AUC), area under the precision-recall curve 

(PRAUC) and the adjusted McFadden's pseudo-R2. 

 

Penalised Logistic Regression 

Since the number of features (=398,422) was much greater than the number of individuals in 

the training set (=1,395 after data preprocessing), a regularisation method was required to 

reduce overfitting of the logistic regression models. 

Logistic regression models with lasso, elastic-net and ridge penalisation were fit to the 

training set using glmnet (version 4.1-1) [17, 18] with the best λ chosen by cross-validation, 

corresponding to the minimum mean cross-validated error. For elastic-net models, α = 0.5 

was used for the L1, L2 mixing parameter. 

Hyperparameter optimisation and cross validation (CV) were used to estimate an optimal 

value of λ for each logistic regression model. The training set was divided equally into three 

partitions. For each pre-selected value of λ, three models were fit, each using two of the 

partitions as the training set and the third for prediction. The mean binomial deviance over 

the three models was then calculated. The model using the λ that minimised this was chosen 
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to evaluate on the test set. Three-fold CV was used to balance the advantages provided by 

using a greater number of folds with the limitations of the number of cases in each fold as 

well as required computation time. In addition, the folds were designed to include an equal 

number of cases to avoid folds with few or zero cases. 

 

Penalised Cox Proportional-hazards Survival Model 

To evaluate the benefit of incorporating time-to-event information, penalised Cox 

proportional-hazards (Cox PH) models were compared with the penalised logistic regression 

models. Cox PH models with lasso and elastic-net regularisation were used to infer the 

hazard function parameters. The resulting linear predictor for the hazard function was used to 

generate an EpiScore for each individual in the test set. Optimal values of λ were estimated 

using the same CV method as in the logistic regression models, except mean partial 

likelihood was used as the metric for deciding the best model. Similar to the penalised 

logistic models, the penalised Cox PH models were fit using glmnet. 

 

Random Forest 

Random forest [19] is an ensemble machine learning model that estimates a function by 

averaging the output from a set of independently trained decision trees. During model fitting, 

each tree is built using a different subset of the variables and the training set to prevent 

individual trees from overfitting to the whole dataset. In addition, random survival forests 

adapts the original method to incorporate right-censored time-to-event data [21]. In this 

study, both random forest for classification and survival random forest were applied to 

compare their difference in predictive performance. 
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The hyperparameters corresponding to the number of trees (ntrees), the number of variables 

considered at each tree split (mtry) and the minimum terminal node size (nodesize) were 

selected using a grid-search CV method. Supplementary Table 11 shows the set of values 

that were tried for each hyperparameter. The R packages randomForest (version 4.6-14) [34] 

and randomForestSRC (version 2.11.0) [35] were used for classification and survival random 

forest models respectively. 

 

Bayesian Additive Regression Trees 

Bayesian Additive Regression Trees (BART) [20] is a nonparametric method that estimates a 

function as a sum over a set of regression trees. BART incorporates the ability to model both 

additive and interaction effects and has shown high predictive performance in comparison 

with similar methods. To reduce overfitting and model uncertainty in parameters and 

predictions, BART uses prior distributions over tree-related parameters. Posterior estimates 

are obtained in a Bayesian framework through Markov Chain Monte Carlo (MCMC).  

For classification BART, 20,000 posterior samples for model parameters were kept after 

10,000 burn-in samples and the mean probability from was used as the model output. 

A variant of BART for survival analysis [22] was also used for 10-year onset prediction. 

1,000 posterior samples for model parameters were kept after 500 burn-in samples. These 

were used to generate 10-year survival probabilities on the test set. This resulted in 1,000 

survival probabilities for each individual in the test set, the mean of which was used as their 

survival prediction. The 10-year onset probability was taken as 1 - 10-year survival 

probability. 

Due to the computation time requirements of MCMC sampling and the apparent robustness 

of BART to hyperparameter misspecification [20], all BART models (classification and 
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survival) were run with 100 trees and remaining hyperparameters set to default. The R 

packages bartMachine (version 1.2.6) [36] and BART (version 2.9) [37] were used for 

classification and survival BART respectively. 

 

Weights for Class Imbalance 

Both Set 1 and Set 2 showed a high ratio of controls to cases. When a high imbalance 

between negatives and positives is present, weights are often applied to the data to address 

under-representation of the positive class. To evaluate their effectiveness, all penalised 

models (logistic and Cox PH) were also run with and without class weights. Cases were given 

a higher weighting in the maximum likelihood estimate to account for their low proportion in 

the training set. These were calculated using the following heuristic inspired by [38]:  
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where ntotal is the number of elements in the training set, wcase is the weight applied to each 

case and ncase is the number of cases in the training set (similar for controls). Using these 

weights ensured that half the weighting was applied to cases and similarly for controls. In 

addition, the sum of all weights = ntotal. To assess the impact of pre-selection on tree-

ensemble methods, each was evaluated using variables selected using the penalised logistic 

models both with and without weights applied. 

 

Validation of Best Performing Model in KORA S4 
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The present analyses are based on a subsample of the participants of the KORA S4 study. 

KORA (Cooperative Health Research in the Region of Augsburg) is a research platform 

performing population-based surveys and subsequent follow-ups in the region of Augsburg in 

Southern Germany [39]. Participants were aged between 25-74 years and each completed a 

health questionnaire, providing details on health status and medication. Blood samples were 

also taken for assaying of omics data.  This study used a subsample of the 1,451 participants 

of the KORA S4 study with DNAm and incident T2D data available. 

The best performing model selected for the Generation Scotland cohort (weighted Cox lasso) 

was used for prediction of incident T2D in the KORA S4 cohort.   

For diabetes morbidity, the data are limited the follow-up to 10 years - starting from KORA 

S4. For incident T2D all prevalent diabetics as well all other diabetes types except T2D cases 

are excluded. Age, body mass index (BMI), hypertension, sex as well as self-reported family 

(mother or father) history of T2D were taken at the baseline of KORA S4. BMI was 

calculated as the individual's weight in kg divided by the square of their height in metres. 

Individuals with missing values in the health measures were removed from the dataset.  

 

EpiScore Prediction of Long COVID-19/Hospitalisation 

Self-reported COVID-19 phenotypes were available in a subset of individuals from the 

Generation Scotland DNA methylation sample who had also participated in the CovidLife 

surveys (N=2,399) [25]. Long COVID-19 phenotypes were ascertained from CovidLife 

survey 3, (N=1,802 Generation Scotland participants with DNAm profiled), where 

participants were asked about the total overall time they experienced symptoms in their 

first/only episode of illness, as well as the whole of their COVID-19 illness. Long COVID-19 

was defined here as symptoms persisting for at least 4 weeks from infection and is correct as 
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of February 2021, when the survey 3 was administered. Hospitalisation information, derived 

from the Scottish Morbidity Records (SMR01), was used to obtain COVID-19 hospital 

admissions using ICD10 codes U07.1 (lab-confirmed COVID-19 diagnosis), and U07.2 

(clinically-diagnosed COVID-19). Hospitalisation data is correct as of February 2021. 

Logistic regression was used to assess the predictive performance of the T2D EpiScore in 

relation to long COVID-19 and severe COVID-19 (i.e. hospitalisation), adjusting for sex and 

age-at-COVID-19 diagnosis. The latter was defined as the age at positive COVID-19 test or 

1st January 2021 if COVID-19 test data was not available. 
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Figure 1. The prediction pipeline and functionality provided in MethylPipeR 
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Figure 2. ROC and PR curves for the top-performing Cox, logistic and tree-ensemble models 
(weighted Cox lasso, weighted logistic elastic-net and BART with weighted lasso features). 
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Figure 3. Classification metrics (sensitivity, specificity, PPV and NPV) for the EpiScores 
generated from the weighted logistic elastic-net model (top) and BART with weighted lasso-
selected features (bottom). The difference in PPV behaviour in the high threshold ranges 
between the two models is due to the low number of individuals with an EpiScore in those 
ranges. 
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Figure 4. Confusion matrix plot of true/false positives/negatives for the null model and full 
model in the Generation Scotland test dataset. (Full model uses EpiScore from Cox Lasso 
with weights.) The table shows binary classification metrics at a probability threshold of 0.5 
(corresponding to the vertical green line in each plot). 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 21, 2021. ; https://doi.org/10.1101/2021.11.19.21266469doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.19.21266469
http://creativecommons.org/licenses/by/4.0/


 

Table 1. Summary information for the Generation Scotland training and test sets.* Summary 
information is mean (SD) or N (%). 

Training Test 
  Cases Controls Cases Controls 
N 153 1,242 213 1,793 
Time-to-event (Years to Onset or 
Censoring) 5.2     (2.9) 11.3   (0.9) 5.1     (2.9) 11.5     (0.9) 
Age at Baseline (Years) 62.1   (9.0) 62.5 (12.4) 59.8   (9.1) 58.2   (13.1) 
Sex (Female) 71    (46.4) 717  (57.7) 96    (45.1) 1,129 (63.0) 
BMI (kg/m2) 31.8   (6.2) 26.4   (4.7) 32.7   (6.3) 26.4     (4.9) 
Self-reported Parent or Sibling with 
Diabetes 59    (38.6) 211  (17.0) 93    (43.7) 360   (20.1) 
Self-reported Hypertension 50    (32.7) 203  (16.3) 75    (35.2) 236   (13.2) 
 

 
* N cases and controls in the models with survival were 163 and 3,900 (training) and 248 and 
4,400 (test) with similar covariate output as above. The full table is provided in 
Supplementary Table 4. 
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Table 2. Logistic regression metrics for 10-year prediction of diabetes in the test set (best 
Cox, Logistic, BART, and Random Forest predictor output). AUC = Area Under the Curve; 
PRAUC = Precision Recall AUC; R2 = McFadden’s pseudo-R2; EpiScore = Epigenetic Score. 

 

 

* Using CpGs from the weighted logistic LASSO training model as input features

Training Model AUC PRAUC R2 EpiScore P-Value 
LASSO Cox PH with weights 0.880 0.539 0.316 1.7x10-16 
Elastic Net Logistic Regression with weights 0.878 0.500 0.301 6.2x10-13 
Classification BART*  0.876 0.493 0.293 2.4x10-11 
Survival Random Forest*  0.874 0.486 0.289 2.8x10-10 
Null Model (covariates only) 0.860 0.444 0.261 NA 
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Supplementary Figure 1. An example from the MethylPipeR-UI Shiny app.
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Supplementary Figure 2. Preprocessing steps for Generation Scotland with number of 
individuals/cases and controls after each step. 
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Supplementary Figure 3. Calibration plots for the EpiScore generated from the weighted 
logistic elastic-net model and BART with weighted lasso-selected features. 
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